Arterial flow characterization with a photodiode array based imaging system

I. A. Cunningham, S. Yamada, B. B. Hobbs, and A. Fenster

Imaging Research Laboratories, The John P. Robarts Research Institute, 100 Perth Dr., London, Ontario N6A 5K8, Canada

(Received 17 August 1988; accepted for publication 4 January 1989)

An x-ray imaging system is described that can be used for obtaining arterial blood flow information. The system consists of a linear photodiode array image detector, simple optical and mechanical components, and a data acquisition microcomputer that connect to a conventional x-ray image intensifier based fluorography system. Flow information is obtained by detecting the movement of a small, locally injected bolus of radio-opaque contrast agent. This is done by determining the bolus mass, integrated over the cross-sectional area, at each of 1024 positions along the length of the artery with a sampling rate of up to 200 samples per s. It is shown in a phantom study that the peak flow velocity can be measured with an accuracy of ±5% by detecting the bolus arrival times at each of the 1024 positions. The mean velocity is obtained with similar accuracy using a cross-correlation technique and a modified form of the Stewart–Hamilton principle. In addition, it is shown that the separation and reattachment points resulting from flow separation near a stenosis can be determined from the bolus clearance times. The locations of these points are consistent with theoretical values for the cosine shaped symmetric 89% stenosis used in this study.

Indexing Terms: Digital Systems, Biomedical Radiography, Blood Flow, X-Ray Radiography, Image Processing, Arteriosclerosis, Flow Rate, Iodine, Phantoms, Heart