Field dependence of T_1 for hyperpolarized [1-13C]pyruvate

N. Chattergoona, F. Martínez-Santiestebana,b, W. B. Handlerc, J. H. Ardenkjær-Larsend,e and T. J. Scholla,b,*

\textbf{Keywords:} dynamic nuclear polarization; relaxation; hyperpolarization; pyruvate

1. INTRODUCTION

Magnetic resonance spectroscopic imaging (MRSI) has been an important tool for molecular imaging with MRI, capable of producing detailed spatial maps of metabolites detected by spectroscopy. Its main drawback is its relatively low sensitivity, which arises from the small polarization of nuclear spins achievable at body temperature (known as thermal polarization) even at fields greater than 3 T. Dynamic nuclear polarization (DNP) is a powerful method used to increase the magnetization of liquid substrates to be used as in vivo probes of cellular metabolism with MRSI (1–4). DNP has been used to increase the sensitivity of in vivo 13C-spectroscopy of slowly relaxing compounds such as pyruvate (5,6), bicarbonate (7,8), fumarate (9), lactate (10), glutamine (11) and others by more than four orders of magnitude (12). This has led to applications in imaging of vascular disease (13–15), organ perfusion (13,16–18), cancer detection (1,19–22), staging (23,24) and quantification of therapeutic response (2,6,23–26).

DNP is a general method producing enhanced magnetization of most nuclei with non-zero nuclear spin (12). For many nuclei with small gyromagnetic ratios compared with protons, such as 13C, their spin–lattice relaxation time in solution can be tens of seconds long. The slow relaxation is a key physical property that permits in vivo detection of these nuclei with MRI. Several relaxation mechanisms are effective (27). Dipolar relaxation is minimized for carbon positions with no directly attached protons (e.g. carboxyls or carboxylic acids). Dipolar relaxation can be further reduced by full or partial deuteration of the molecule. A deuterated solvent can be chosen to reduce intermolecular dipolar relaxation, but this has little effect in vivo. At high magnetic field, chemical shift anisotropy may cause significant relaxation for carboxyls and carboxylic acids in particular. Spin-rotational relaxation may become important for small molecules at higher temperatures. Scalar relaxation of the second kind may cause fast low-field relaxation in molecules where the carbon has a scalar coupling to a quadrupolar nucleus. Finally, paramagnetic impurities should preferably be eliminated or the effect reduced by chelators.

T_1 (spin–lattice relaxation time) can be determined at, for example, 3 T with a suitable pulse sequence to measure the hyperpolarization as a function of time using small-angle RF pulses, but very little data exists for the relaxation of these compounds at low fields, where spin–lattice relaxation could...
be significantly faster. Since the hyperpolarized contrast agents are usually dispensed from the DNP apparatus near or at the earth’s field, it is important to measure T_1 at these low fields for the exact formulation of the agent that is used for in vivo imaging. This includes 13C-enriched substrate concentration, solution pH, buffers and temperature, which all have an effect on relaxation. These data are important to determine key parameters for optimization of the DNP dissolution process and the amount of signal loss that is experienced in transportation from the DNP apparatus to the imaging magnet.

Nuclear magnetic resonance dispersion (NMQRD) measurements (T_1 measurements as a function of magnetic field) are typically made using NMR spectrometers by shuttling the sample out of the spectrometer where it is allowed to relax at some field determined by its position in the fringe field of the magnet (28–30). The sample is then rapidly transferred back into the NMR magnet where its remaining magnetization is measured. The process is repeated several times with increasing periods of relaxation at the same point in the magnetic field, building up a relaxation curve, which can be analyzed to estimate T_1. This method is applicable only when the shuttle time is small compared with the relaxation time. Great care must be taken to eliminate stray magnetic fields and determine the average magnetic field that the sample experiences during relaxation. It is worth noting that the shuttling method was used in Mieville et al. (28) to measure the T_1 dispersion of hyperpolarized $[1^{-13}C]$-labeled acetate from 0.2 mT to 18.8 T, a range that far exceeds which that can be achieved by field-cycling.

Fast field-cycling relaxometry (31–33) is an alternative technique for acquisition of NMQRD data. We modified a SpinMaster FFC2000 1 T C/DC (Stelar s.r.l., Italy) fast field-cycling nuclear resonance relaxometer to measure hyperpolarized compounds. Compared with an apparatus using the shuttle method, this instrument is capable of automated NMQRD measurements over a more limited range of magnetic fields (0.25 mT to 1 T) by rapidly modulating the current in the resistive magnet of the relaxometer. This permits sample relaxation at a low field and acquisition of the sample free-induction-decay at a fixed higher field (~0.75 T), preserving sensitivity. Since the sample is stationary during these measurements, its temperature can be precisely controlled. The time to transition from relaxation to acquisition field is negligible compared with measured T_1 times and has no systematic effect on these measurements. A custom shim was fitted to the relaxometer to eliminate transverse magnetic fields present arising from components of the relaxometer and surrounding infrastructure. These transverse fields had a significant systematic effect on our T_1 measurements at magnetic fields less than 1 mT.

2. RESULTS AND DISCUSSION

2.1. Measuring T_1

A typical decay curve for hyperpolarized $[1^{-13}C]$pyruvate is shown in Fig. 1. Each point on the decay curve represents a periodic sampling of the hyperpolarized pyruvate magnetization using a small RF tip angle (5°) to collect a free induction decay measurement at the acquisition field of 0.75 T. The relaxation field for this decay curve was 0.141 T and the repetition time for data acquisition was 3.221 s. The sample temperature was controlled to 37°C ±0.5°C. The extracted T_1 for these data, including corrections for tip-angle loss, was 59.8 ± 0.3 s. The R^2-value for this fit was 0.9996 and the uncertainty in T_1 is quoted as a single standard deviation derived from the fitting algorithm assuming even weighting of the decay curve data. The residuals from the non-linear least-squares fit to this decay curve are overlaid as closed triangles.

2.2. T_1 Dispersion and Relaxivity Results

The T_1 results for all 26 measurements are shown in Fig. 2. Measurements were recorded for magnetic fields ranging...
between 0.237 mT and 0.705 T. The average fitting uncertainty (1 standard deviation) for T₁ was ±0.33 s for all the results. Analysis of the scatter of measurements repeated at a particular relaxation field yielded an experimental reproducibility of approximately 1.91 s for T₁, which is several times larger than the statistical uncertainty quoted above. We conservatively assigned an uncertainty of 2.24 s for all T₁ measurements calculated as the sum of the average statistical uncertainty from all 26 measurements and the experimental reproducibility. The T₁-dispersion data are well characterized by the formula:

\[T₁ = (3.74 ± 0.52) \times \log_{10}(B_{\text{rel}}) + (63.0 ± 1.2) \] s

where \(B_{\text{rel}} \) is the relaxation field measured in Tesla. The uncertainties for the fitted parameters represent one standard deviation. The formula is displayed as a solid line in Fig. 2 along with 95% confidence bands (dashed lines). pHs for these samples ranged from 7.63 to 7.93. The average pH measured for these samples was 7.75 with a standard deviation of 0.09. Relaxivity results for OX063-radical-doped pyruvate are given in Table 1. T₁ measurements were made for 1- and 2-mmol l⁻¹-radical concentrations at 0.001, 0.01, 0.1 and 0.5 T using the field-cycled relaxometer. From the T₁ data, the relaxivity of the OX063 radical for the C-1 of pyruvate was calculated at these field points. The relaxivity uncertainties are propagated assuming an uncertainty of 2.24 s for each radical-doped T₁ measurement and from those in the formula characterizing the undoped T₁-dispersion data.

In Fig. 3, the four relaxivity data points are plotted against 1 H Larmor frequency. In the same plot we show the water 1 H NMRD profile at 23 and 37 °C from Ardenkjaer-Larsen et al. (34). The fitting of the 1 H dispersion data gave a minimal distance of approach of 5.5 Å and relative translational diffusion constants of \(3.4 \times 10^{-9} \) and \(4.2 \times 10^{-9} \) m² s⁻¹, respectively. The 13C relaxivity data points were well approximated by a theoretical NMRD profile calculated with a minimal distance of approach of 7.5 Å and a relative diffusion constant of \(2.18 \times 10^{-9} \) m² s⁻¹. The relative diffusion constant was estimated on the basis of the diffusion constant of pyruvate from Schilling et al. (35), 0.983 \(\times 10^{-9} \) m² s⁻¹ at 25 °C, which would be approximately 40% higher at 37 °C, i.e. \(1.38 \times 10^{-9} \) m² s⁻¹. The diffusion constant of the radical, \(0.8 \times 10^{-9} \) m² s⁻¹ at 37 °C, was obtained from Ardenkjaer-Larsen et al. (34), owing to the limited number of data points, no fitting was attempted.

2.3. Experimental Challenges

The buffered pyruvate solution used in these relaxation experiments is a common formulation for in vivo animal research (1,2,5,6). Measurement of the T₁ NMRD profile of the C-1 of pyruvate at low-fields provides an estimate of how much hyperpolarized signal is lost as the solution is dispensed at the earth’s field and transported to the magnetic resonance imager for injection. Relaxation measurements of long-T₁ compounds are challenging, particularly for low-gyromagnetic nuclei such as 13C. Compared with proton relaxation, the magnetic resonance signals for 13C nuclei at the concentrations used for animal injection are very small and insufficient for relaxometry. The use of DNP to enhance signal acquisition is an obvious resolution to these problems, but presents other experimental challenges. The hyperpolarized solution cannot be re-polarized and, as a result, each datum on the T₁ dispersion curve is from a measurement of a unique sample. This still leads to increased measurement scatter that is apparent in repeated measurements with identical experimental parameters. This is probably due to variations in the dissolution process that

Table 1. Relaxation rates for pyruvate doped with the triarylmethyl radical, OX063. Buffered hyperpolarized [1-13C]pyruvate was combined with a concentrated solution of OX063 to produce 1- and 2-mmol l⁻¹-radical concentrations.

<table>
<thead>
<tr>
<th>Magnetic field (T)</th>
<th>0.075 mmol l⁻¹</th>
<th>1 mmol l⁻¹</th>
<th>2 mmol l⁻¹</th>
<th>(r₁) (m⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.01931 (73)</td>
<td>0.0276 (17)</td>
<td>0.0392 (34)</td>
<td>9.68 (77)</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01801 (52)</td>
<td>0.0234 (12)</td>
<td>0.0404 (37)</td>
<td>8.6 (2.1)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01687 (37)</td>
<td>0.0204 (9)</td>
<td>0.0250 (14)</td>
<td>4.10 (23)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.01616 (32)</td>
<td>0.0206 (9)</td>
<td>0.0241 (13)</td>
<td>4.24 (25)</td>
</tr>
</tbody>
</table>
are difficult to control given its very rapid nature. Subsequent pH measurement of the buffered pyruvate solution is one means of determining variations in the dissolution. Despite careful weighing of stock pyruvate/radical mixture and dissolution medium before insertion in the DNP apparatus to better than a milligram, pHs ranged from 5.5 to 8.3. We chose to reject any T1 data outside the pH range 7.6–8.0.

Samples were transferred to a pre-warmed (37°C) NMR tube and quickly carried by hand from polarizer to relaxometer. Temperature and field were not controlled during the brief 8-s transfer time. Transportation has limited influence on the measured T1 value since T1 is measured for the sample in magnetic field-controlled environment and temperature of the relaxometer. Conditions during transportation can only affect the amount of hyperpolarization that survives for measurement at the relaxometer. It was not necessary or practical to control the sample exposure to ambient temperature and magnetic field during the brief transfer between polarizer and relaxometer.

Relaxivity measurements of the triarylmethyl (TAM) radical rely on accurate knowledge of its concentration in the buffered pyruvate solution. The concentrated TAM–water solution can be carefully pipetted into the NMR tube and weighed; however, relaxation of the pyruvate solution after dissolution affords only enough time for rapid pipetting of this solution into the TAM-containing NMR tube and gentle agitation of the combined solution as the sample is rushed to the relaxometer. Repeated relaxation measurements at a given TAM concentration suggest that the variability in the resulting relaxation time constant is no larger than that observed for the T1-dispersion measurements, indicating that this procedure is sufficiently accurate for these purposes.

Long acquisition times for the magnetization decay curve (300–500 s) required control of the sample temperature. This was accomplished by dispensing the solution into a pre-warmed NMR tube before insertion into the relaxometer. Temperature-regulated air (37°C) was blown around the sample tube during relaxation measurement.

3. CONCLUSIONS

Low-field relaxation of [1-13C]pyruvate was measured in solution using field-cycled relaxometry and dynamic nuclear polarization for sensitivity enhancement. The T1-dispersion of a hyperpolarized solution of buffered pyruvate was measured from 0.237 mT and 0.705 T at a temperature of 37°C (±0.5°C). This solution was a common formulation for in vivo animal research (1,2,5,6). Analysis of the results showed that the relaxation time for the C-1 nucleus was ~46.9 s at the earth’s magnetic field (0.05 mT) compared with ~65 s at 3 T, a decrease of 28%. For our infrastructure, the time interval required to dispense the hyperpolarized pyruvate solution and transfer it to the magnetic resonance scanner was ~8 s. Assuming that the solution spends most of its time at the earth’s field during this interval, one calculates that approximately 16% of the sample magnetization is lost during transfer. One could devise a system where the hyperpolarized solution was dispensed into a holding field (instead of the earth’s field) in which the hyperpolarized solution could be transferred to the fringe field of the imaging magnet. A modest holding field of 0.01 T would increase the T1 of the pyruvate solution by nearly 18%; however, for a relatively short transfer time of 8 s, these measurements suggest that one could only achieve a 2.3% increase in signal intensity by this added complexity. For longer transfer times or compounds with greater T1 dispersion, a transfer field might be a worthwhile effort.

The relaxivity of the TAM radical, OX063, on the C-1 carbon was measured using field-cycled relaxometry for magnetic fields less than 1 T. The relaxivity of this paramagnetic compound ranged from 9.68(77) m-1 s-1 at a magnetic field strength of 1 mT to 4.24(25) m-1 s-1 at 0.5 T. This is about 30 times lower than the water proton relaxivity, which is mainly due to the lower gyromagnetic ratio of 13C (accounting for 16-times-lower relaxivity) and the larger size of pyruvate compared with water. The TAM radical was added to pyruvic acid at a concentration of 15 mmol l-1. After dissolution, the concentration was approximately 75 µM so that, at a field strength of 1 mT, the presence of the radical shortened the T1 of the hyperpolarized buffered pyruvate solution by 2 s. Removal of the radical after dissolution by filtering is possible but the benefit of only a modest decrease in relaxation rate would not make this worthwhile based on the additional time requirement for that process. However, for other substances that are hyperpolarized in a solvent at a lower effective concentration than pyruvic acid (such as bicarbonate (8) or fumaric acid (9)), this additional relaxation could be a significant concern at low fields, since after dissolution the radical ends up at a higher concentration (than for polarization of pyruvate) for the same concentration of the 13C-labeled compound.

4. EXPERIMENTAL METHODS

4.1. Sample Preparation

A DNP apparatus (HyperSense, Oxford Instruments, Abingdon UK) was used to hyperpolarize [1-13C]pyruvic acid (Cambridge Isotope Laboratories, Cambridge, MA, USA). Following a preparation that is widely used for in vivo research (1,2,5,6), approximately 30 mg of a mixture of [1-13C]pyruvic acid and 15-mmol l-1 OX063 triarylmethyl radical (Oxford Instruments Molecular Biotools, Abingdon UK) were precisely weighed in a sample cup and inserted in the DNP apparatus for polarization over approximately 1 h. Dissolution medium was prepared using a solution of 40-mmol l-1 Trizma Pre-Set Crystals (pH 7.6, Sigma Aldrich, St Louis, MO, USA) and 80-mmol l-1 sodium hydroxide in de-ionized water. Dissolution ethylenediaminetetraacetic acid was added at a concentration of 100 mg l-1 to sequester any metal ion contamination that might arise from contact between the dissolution medium and the DNP dissolution fluid path. Immediately prior to dissolution, the DNP apparatus was loaded with ~4.55 ml of the solution medium calculated to produce a concentration of 80-mmol l-1 pyruvate upon dissolution at a pH of ~7.75 and temperature of ~40°C. The dissolution medium was not degassed and no effort to purge the pathway of oxygen was attempted. The buffered hyperpolarized pyruvate was dispensed into a pear-shaped flask and 1.1 ml of the liquid was drawn up into a syringe, transferred to a pre-warmed 10-mm-diameter NMR tube and rapidly transported to the field-cycling relaxometer. Typical polarization times were ~45 min producing better than 15% polarization of the pyruvate solution.

As a check for possible systematic experimental effects, the remaining aliquot of every pyruvate dissolution was transferred into a 0.55-T benchtop NMR spectrometer (Oxford Instruments Magnetic Resonance, Abingdon, UK). The spectrometer was programmed to measure the T1 relaxation at 37°C using a small
flip angle (5°) excitation pulse and 5-s repetition time for 100 acquisitions at this single field strength. After each measurement, the pH of samples from both the bench-top spectrometer and the field-cycling relaxometer were recorded. It should be noted here that each T1 measurement is a separate hyperpolarization dissolution from the DNP apparatus. Care was taken to assure measurement-to-measurement reproducibility of the sample composition by careful weighing of all sample components including dissolution medium.

4.2. Relaxometry Measurements of TAM Radical

For determination of the effects of the TAM radical on pyruvate relaxation, a stock solution of 100-mmol l⁻¹ OX063 dissolved in de-ionized water was prepared. Prior to dissolution of the hyperpolarized pyruvic acid, a small volume (10 or 20 μl) of the OX063/water preparation was placed into the bottom of a NMR tube. A 1000-μl aliquot of 80-mmol l⁻¹ of OX063 in the combined solution. T1 was measured for these two concentrations at magnetic field strengths (0.001, 0.01, 0.1 and 0.5 T) using the field-cycling relaxometer.

4.3. Relaxometry

The field-cycling relaxometer was located in an adjacent laboratory approximately 26 m from the DNP apparatus. This distance was traversed in approximately 8 s, running with the sample in hand. All three components of the magnetic field were roughly surveyed along this route at 1-m intervals. The magnitude of the ambient field varied between 0.022 and 0.082 mT with an average of 0.045 mT. The direction of the field was primarily vertical (Bmagnitude ≈ 0.75) and the vertical component of the magnetic field did not change direction along the trajectory.

The relaxometer was programmed to measure the sample magnetization 100 times with a fixed repetition time (typically 3–5 s) with a small flip angle (5°). The magnitude of each FID was integrated to produce the magnetization as a function of time. The spin–lattice relaxation time was extracted from a three-parameter exponential model using a standard non-linear least-squares fitting algorithm implemented in MATLAB (MathWorks, Natick, MA, USA) assuming even weighting for all data:

$$\text{signal} = A\cos^{\alpha-1}(\gamma) e^{-nT1} + y0$$

where A is the initial signal amplitude (y-intercept), T1 is the spin–lattice relaxation time and y0 is the signal offset.

The term, $\cos^{\alpha-1}(\gamma)$, is a correction for loss of longitudinal magnetization at the nth measurement for a flip angle, α. This angle was pre-determined by calibration and the repetition time, T0, was also fixed at its known value. The temperature of the sample was maintained at 37 °C (± 0.5 °C) using heated air during the experiment. The relaxometer was typically set up for measurement for relaxometry of thermally polarized agents where the sample magnetization is re-established before each relaxation period. Our initial NMR data without shim correction showed a ‘knee’ in the dispersion curve data around 1 mT. Measured relaxation data at lower fields were systematically less than those we ultimately reported here and the discrepancy increased with decreasing field. By 0.7 mT, this systematic effect was responsible for a 30% reduction in the relaxation time. To mitigate this effect, a cylindrical shim was designed on a radius of 7.064 cm and was concentric with the field-cycling magnet, and fastened around the acrylic cooling sleeve. The azimuthal orientation and strength of the shim was determined by insertion of a three-axis Hall-effect probe (Senis GmbH., Zurich, Switzerland) that was placed in the sample probe of the spectrometer. This shim reduced the transverse component of the strat field from ~0.1 mT to less than 0.01 mT (measurement limit for probe) for a shim current of 1.0 A.

Calibration of the flip angle was an important aspect of the experimental measurement. For this work, α was calibrated using a phantom of [1,13]C-pyruvic acid doped with ProHance (Gadoteridol, Gd-HP-DO3A, Bracco Diagnostics Inc.) to reduce the T1 of the 13C nuclei to ~175 ms. This phantom was identical in volume with the hyperpolarized pyruvate samples. A series of measurements were undertaken to determine the RF pulse width corresponding to a flip angle of 90 and 180° for both 1H and 13C nuclei. Pulse widths scaled with angle and inversely with respect to the gyromagnetic ratios of the two nuclei, as expected.

Acknowledgements

The authors would like to thank the Ontario Institute for Cancer Research, Imaging Research Translation Program and the Natural Sciences and Engineering Research Council of Canada for funding this research. We also like to acknowledge useful discussions with Albert Chen, GE Healthcare, Toronto, Canada, Gianni Ferrante, Stelar s.r.l., Italy, and William Mander, Oxford Instruments, UK.

REFERENCES

