Chapter 3 Useful Language for Scientific Presentations

The specific language you need for your presentation will obviously depend on your particular topic. You will learn this specific vocabulary as you prepare your talk. In this chapter, we present some general expressions that can help you deal with certain aspects and situations common to most presentations together with a few concrete examples of the different approaches applied to specific situations.

Opening Your Talk

Good morning/afternoon/evening, ladies and gentlemen. Remember that in English the morning lasts from the beginning of the session to 12 p.m. (noon). The afternoon comprises the period from 12 p.m. to sunset; however, many speakers say “good evening” from about 6 p.m., regardless of the time of the year.

It is customary to thank the moderator, chairperson, or person that has introduced you.

Thank you, Dr. Ross, for your kind introduction. You can get by with *Thank you, Dr. Ross* or even just saying *Thank you* and looking at the person who introduced you.

If nobody has introduced you, briefly introduce yourself.

My name is Susanne Godin and I’m a neurosurgeon at La Pitie Hospital in Paris, France.

If you are an invited speaker, you should thank your host.

I would like to thank Dr. Hansen and McGill University for giving me this opportunity to talk to you today.

You will probably have sufficient time to include a few words of praise for your hosts, their institution, and/or city or country.

It is an honor to speak in such a renowned institution.

Montreal is a great city and it’s great to be here.

Mention any connection you might have with the institution or city.

I did a fellowship here in Dr. Wong’s lab back in the 90s.

This is my first visit to Berlin; I hope it is not my last.

Make sure your audience understands the subject of your talk.

Today/this morning/this evening/in this presentation, I’m going to tell you about…..
It is a pleasure/I’m very grateful/to have this opportunity to talk to you about….

It is sometimes useful to inform them what will NOT be included in your presentation.

This presentation will not give you a general overview of the complications of hip replacement surgery; rather we will limit our discussion to prosthetic loosening.

I’m afraid that we won’t have time to delve into the interesting new developments in minimally invasive surgery, but I understand Dr. Anderson will be talking about that later today.

It is also good form to acknowledge your colleagues during the introduction.

I’m presenting this paper on behalf of my colleagues, Drs. Beluga and Young.

Dr. Casey and I first became interested in this subject after…

I am grateful to have the support of experienced, knowledgeable researchers like Sarah O’Reilly, Larry Peterson, and Bill Edwards, as well as of brilliant and hard-working research fellows like Jane Goodman and Dana Smith.

In the following sections, we present some sample slides with brief examples of what the presenter might say while each is displayed. Of course, what the presenter says will obviously be determined by the purpose of the talk and by the target audience. Experienced presenters often include the same slides in different presentations with completely different explanations, depending on their intended audience.

Mapping Your Talk

It is often a good idea to include a “mapping slide” early in your presentation and repeat it, highlighting the relevant part, when you make major transitions. Here is one example of a mapping slide from a presentation about the clinical value of antinuclear antibody determinations:

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What are antinuclear antibodies (ANA)?</td>
</tr>
<tr>
<td>• Tests to detect ANAs</td>
</tr>
<tr>
<td>• Indications for ANA testing</td>
</tr>
<tr>
<td>• Interpretation of test results</td>
</tr>
<tr>
<td>• Conclusions</td>
</tr>
</tbody>
</table>

This slide was displayed immediately after the title slide. It provided an overview of the entire talk and also served as the introduction to the first section. Later in the talk, the same slide was displayed at the beginning of each section with the
relevant title in black and the remaining sections in gray. The following slide was displayed during the transition to the second section of the talk:

Contents

- What are antinuclear antibodies (ANA)?
- Tests to detect ANAs
- Indications for ANA testing
- Interpretation of test results
- Conclusions

This slide was followed by another that provided an outline to the second part of the talk:

Tests to detect ANAs

- Indirect immunofluorescence
- ELISA
- Substrate
- Fixation
- Microscopy

In this approach, the section title is often used as the heading for all slides within a section.

Introducing the Main Question

After providing your audience with all the necessary background information they need to understand why the matter you discuss is important, you need to zoom in on the precise subject matter of your presentation. The following phrases can be useful for introducing your objective, hypothesis, or research question:

- *The question is then*
- *This made us wonder*
- *So, the question is this*
- *Thus, we aimed to*
- *Therefore, we hypothesized that*
- *So, we wanted to know*
Talking about Methods

After introducing your research question, you will need to tell your audience how you went about answering it. Although some presentations describing new and innovative research techniques may dwell more on the methods than any other section, the aim of most short presentations is usually to communicate your findings and results, so you should limit discussion of the research techniques to only the essential details.

- These were the inclusion criteria:
- We excluded patients with any of the following:
- We recorded the following variables:

You may have to mention any special equipment you used. A slide with a picture (a photograph or diagram) of any device your audience may be unfamiliar with and interested in can help (see below).

- This is the quadrature head coil we used for the MRI studies.

Standard techniques can be mentioned briefly in passing.

- We used ELISA for all determinations.
- All patients underwent T1- and T2-weighted MRI sequences.

It may be necessary to define some variables before moving on to the results.

- We considered prostates with asymmetries, indurations, or nodules abnormal.
- TIA was defined as an isolated episode of amaurosis fugax or focal cerebral dysfunction of ischemic origin with complete recovery within 24 h.

A flowchart can often provide useful support for talking about the patients or subjects included in the study. As with other figures, it is important to keep complexity to a minimum and to clearly point out details that you want the audience to pay attention to. Building up the chart point by point can help the audience focus on the relevant parts of complex flowcharts.

Presenting Data in Tables

It is often convenient to present data in a table. Remember, however, that a presentation is not a written report. Whereas readers can study tables at their leisure, the audience at a presentation does not have this luxury. Ask yourself whether the information in the table is strictly necessary and simplify tables that you cannot eliminate. Consider presenting the data in another format (e.g., a graph) that will be more amenable to your audience. Pause when you display a new table and be sure to give your audience time to take in the information it contains.
Try to design your tables so that they can be understood without any accompanying explanation. Every table should have a brief title to inform the audience of the specific topic or key point that it reports. Label the columns and rows clearly. Define any nonstandard abbreviations you need to use. Give units of measurement (usually within parentheses) beside or below the variable in the head of the column. If necessary, add footnotes with some of the following information: details of the experiment, definitions of abbreviations and/or symbols, information about statistics.

Even after your best efforts to design a table that is perfectly comprehensible on its own, you still need to lead the audience through the table, directing their attention at the key points you want to stress. Remember that while you may know everything in the table by heart, this is probably your audience’s first encounter with this information and it is your job to explain it to them. A lot of data can be crammed into a table, and it is the presenter’s job to point out what is relevant. Mark the key points clearly, so your audience does not have to struggle to determine what you are trying to say. It is a good idea to design your slides so that the information you want to draw the audience’s attention to is clearly marked, so you do not need to actually point it out with the computer’s mouse or a laser pointer, and it is often preferable to use effects to highlight the important points one by one as you talk about them.

<table>
<thead>
<tr>
<th>Week</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>2</td>
<td>17</td>
<td>142</td>
<td>340</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>2.5</td>
<td>7.5</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

This slide shows how the fetus grows from the second month of development to term. I’d like to remind you that we’re referring to developmental age here, in other words, to the time from fertilization. Gynecologists usually refer to gestational age, which is calculated from the mother’s last period and is typically 2 weeks ahead of developmental age. Thus, a developmental age of 8 weeks corresponds to a gestational age of 10 weeks.

During the third month of development, from the 8th to the 12th week, the fetus grows phenomenally, tripling its length and increasing its weight eightfold (here you should point out the relevant figures in the table).

Sometimes it is a good idea to incorporate visual or graphic material into a table to make it easier for the audience to grasp the main idea. Notice how a graph would illustrate the same text somewhat better:
But perhaps the best way to make the data come alive is by adding an image to the table:

FETAL GROWTH

<table>
<thead>
<tr>
<th>Week</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>2</td>
<td>17</td>
<td>142</td>
<td>340</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>2.5</td>
<td>7.5</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

Talking about Figures

A picture is worth a thousand words. Like tables, figures should have a brief title to inform the audience of the specific topic or key point that they illustrate. You should pause briefly every time you display a new figure so that your audience can take in the information it contains. Presenters are often so familiar with their material that they forget how difficult it is for someone seeing the information for the first time to get oriented.

Try to design your figures so that they can be understood without any accompanying explanation. Label the image clearly. Define any nonstandard abbreviations you need to use. Give units of measurement (usually within parentheses) on the axes of the graph. If necessary, add footnotes with some of the following information: details of the experiment, definitions of abbreviations and/or symbols, information about statistics. However, remember that the bulk of the explanation should be contained in what you say – figures already contain a lot of information for the audience to process, and you do not want to overwhelm them with an image cluttered with too many labels.
No matter what kind of figure you display, be sure to use the same key words in the figure as in the rest of your talk. For example, if you have referred to the sulcus lateralis cerebri as “the lateral sulcus” throughout the talk, you could confuse some listeners if you label it “the Sylvian fissure” in an image.

General Language for Referring to Images

Although it is usually best to use a pointer (or even better – previously placed arrows or other markers) to refer to important items in a picture, it is sometimes useful to direct the audience’s attention to different parts of the picture in general terms. It is possible to describe just about any position within an image by combining the information presented in the two following slides. It is especially important to use the correct prepositions when you use this approach.

<table>
<thead>
<tr>
<th>In the top left corner</th>
<th>At the top</th>
<th>In the top right corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the left</td>
<td></td>
<td>On the right</td>
</tr>
<tr>
<td>In the middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOWARD THE BOTTOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Just below the top left corner</td>
<td></td>
<td>At the top on the right</td>
</tr>
<tr>
<td>In the middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toward the top</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the left</td>
<td></td>
<td>In the middle</td>
</tr>
<tr>
<td>Toward the bottom</td>
<td></td>
<td>Toward the right</td>
</tr>
<tr>
<td>At the bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the middle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In the bottom right corner</th>
<th>At the bottom</th>
<th>In the bottom left corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just below the top left corner</td>
<td></td>
<td>At the bottom on the right</td>
</tr>
<tr>
<td>In the middle</td>
<td></td>
<td>Toward the bottom</td>
</tr>
<tr>
<td>Toward the top right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At the bottom</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This kind of language is often used together with prepositions that describe the relation between the objects in the picture, like on, in, under, above, to the right/left of, near, behind, etc.

Here is an example of how we might use this kind of language in a talk to teach basic radiological anatomy to medical students:

![Abdominal CT Scan](image)

This is an axial CT slice of the abdomen obtained after administering an intravenous contrast agent. Remember that the left side of the image represents the right side of the patient and vice versa. It is important to remember that CT images are generated from X-ray images, so the denser the tissue the brighter it will appear. Thus, bones are white – the bright Y-shaped structure at the bottom in the middle of the image is the spinous process and part of the posterior laminae of a lumbar vertebra. The bright circle above it is the body of the vertebra. The oval structures on either side of the body of the vertebra are the kidneys. You can see the left adrenal gland above the left kidney toward the center of the image. The slightly darker, more elongated oval shape to the right of the left kidney in the image is the spleen. The long structure on the left of the image that has a density similar to that of the spleen is the liver. The slightly darker, rounded structure abutting the top half of the liver is the gallbladder. The black spaces at the top of the picture illustrate air in the intestinal loops.

Types of Figures

Many types of figures can help us illustrate our ideas. Notice that we often use the present tense to talk about figures, because the information contained in figures exists outside the realm of time. Nevertheless, it is also common to use the past tense to talk about the findings or results of a study or experiment.

Figures that show findings directly can be useful for providing examples: these may come from diagnostic imaging tests (X-rays, computed tomography,
magnetic resonance imaging, ultrasonography, scintigraphy, positron emission tomography, echocardiography, endoscopy, etc.), photographs (of patients, of the surgical field, of anatomic specimens, of apparatuses, of results of techniques like electrophoresis, etc.), or printouts from monitoring devices (electrocardiogram, electroencephalogram, etc.). No matter where the image comes from, it is essential to eliminate any labels or facial characteristics that might allow the patient to be identified.

Here is an example of a slide from a presentation entitled “CT Findings in Chronic Pulmonary Embolism”:

![CTEPH Vascular signs. Pulmonary Artery signs](image1)

(Partial Obstructive Filling Defects: Poststenotic dilatation)

While this slide was being projected to an audience of radiologists, the speaker made the following comments:

These patients often have aneurysms or poststenotic dilatations. In the image on the left, there are two aneurysms – one affecting the posterior segment of the right upper lobe (at this point in her talk, the yellow arrows marking the dilated segment appear) and the other affecting the right lower lobe artery (the other yellow arrow appears). The image on the right is an oblique MIP: here we can see the band in more detail (red arrow appears in both images) and we get a better view of the poststenotic dilatation in the right lower lobe artery (yellow arrow appears in the image on the right). There are also evident signs of PH like marked increase of diameter of pulmonary arteries and tortuous vessels (blue arrows appear).

Here’s another example of a figure that shows findings from a patient directly, in this case, an electrocardiogram. This slide was shown in a presentation to a
group of general practitioners in the third class in a mini-course on electrocardiography.

(Antonio Martinez-Rubio, MD, PhD, FESC, FACC; used with permission)

Here’s another example of second-degree atrioventricular block. Let’s have a look at these two simultaneous EKG traces from the aVR and aVL leads. (Pause) You can see how the first four P-waves are followed by four QRS complexes. The P–R interval is a constant 170 ms throughout these four beats. (Pause) But look what happens next! (Pause) The fifth P-wave is not followed by a QRS complex. (Pause) This happens again after the seventh P wave. (Long pause). What does this mean? (Pause for a few seconds to give the audience a chance to begin to formulate their own answers to this question). Remember the P-wave corresponds to the depolarization of the atrium, and the QRS complex corresponds to the depolarization of the ventricle. (Pause) So, what we are seeing here is an abrupt block in the electrical impulse that travels from the atrium to the ventricle.

This is what we usually refer to as a Mobitz type 2 AV block. Instead of the progressive lengthening of the PR interval, called the Wenckebach phenomenon, that we saw earlier in Mobitz type I, the interruption in P-wave conduction is sudden and unexpected in Mobitz 2, and as we’re going to see, this has important implications for the clinical presentation and treatment.

Other figures, like drawings or diagrams, are useful for summarizing and illustrating ideas. Drawings illustrate concrete objects. Diagrams illustrate processes or concepts. Both drawings and diagrams can be more or less realistic or more or less schematic. Two principles should guide your use of drawings and diagrams: simplicity and clarity. Do not present more information than your audience can absorb, and be sure to direct their attention to the relevant parts of the figure both by marking the image and by what you say. A drawing is often better than a photograph because it allows us to emphasize important details while eliminating or minimizing less important details that might distract the audience in a photograph. Drawings also allow us to use cross-sectional cutaways to show details below the surface that are not visible in photograph. Compare the usefulness of this photograph and this diagram as visual support for the spoken text below:
The ADS is an electronically controlled aspiration system to collect fluid/air. It has a water seal that allows the aspiration pressure to be kept constantly above 20 cm H₂O. As you can see, it is equipped with a handle and wheels, so that the patient can pull it around. It has a dual power source. When patients
are moving around, it runs off a 12-V battery. And when they are stationary at home or in their hospital rooms, they can plug into a standard 220-V AC outlet. The ADS has a separate aspiration pump for each power source: so when they are plugged in, the standard hospital aspiration pump kicks in, and the battery charger comes on. Having separate pumps for each energy source is much more energy efficient, extends the battery autonomy, and also allows for faster charging.

Whether you use a more realistic or a more schematic diagram will depend on many factors, such as your artistic ability, your expected audience, or personal taste. Schematic diagrams have the advantage of being simpler, but the visual components of more realistic diagrams often help to make them more memorable. Compare the usefulness of these two diagrams in illustrating the accompanying text about the hypothalamic-pituitary-thyroid axis below.
When the hypothalamus senses low levels of thyroid hormone: triiodothyronine or T3 and thyroxine or T4 in the circulation, it responds by releasing thyrotropin-releasing hormone, or TRH. The TRH acts directly on the pituitary, stimulating it to produce thyroid-stimulating hormone, or TSH. The TSH, in turn, stimulates the thyroid to produce T3 and T4. T3 is the active form of thyroid hormone. It is much more potent than T4, and about eighty to ninety percent of the thyroid hormone is released from the gland in the form of T4, which is converted to T3 in the tissues. When the levels of thyroid hormone return to normal, negative feedback to the hypothalamus and the anterior pituitary inhibits the release of TRH from hypothalamus and TSH from anterior pituitary gland.

Graphs are figures that are useful for summarizing data and conclusions. Audiences can often appreciate information presented in graphs more intuitively than they can information presented in tables. There are many different kinds of graphs, and it is important to choose the one that best suits your purposes. Bar graphs are useful for comparing differences in whole quantities. Pie graphs are useful for showing the different proportions of each element in relation to the whole. Boxplots are a convenient way to show a great deal of information about groups of numerical data, but they can be confusing for many audiences and you should take your time explaining them. Line graphs are most useful for displaying data that changes continuously over time. By convention, the independent variable is plotted on the X-axis and the dependent is plotted on the Y-axis.

Here is a very simple example of a graph, in this case a histogram, from one of my classes in which I talk about the importance of English for communication in science:

![Histogram Example](image)

As I put up the graph, I tell my students what it is about; for example, “this graph shows the difference in the percentage of papers published in English in France and Germany in a twenty-year period”. But I don’t stop there – I know I need to go on to explain the different axes and bars. “The blue bars show the percentage of papers that were published in these countries in 1980, which as you can see, is roughly half of all scientific papers. The red bars show the percentages for the year 2000, which is nearly 90%.” Then I tell them the important point “As you can see, English is becoming more and more important for scientific communication”. Finally, I try to make it clear how this information relates to the rest of my presentation “Together with the other figures we have seen, this example shows us that the trend toward communicating in English is becoming more and more pronounced, and although I don’t have the figures, you can bet that this percentage will have increased by 2010.”
The following slide is an example of how results might be displayed using bar graphs. It comes from a presentation about an experimental study examining the mechanisms underlying elevated cytokine production seen in cirrhotic patients with infections; the speaker’s comments are shown below.

(Maria José Ramírez, PhD; used with permission)

This slide shows the effects of administering 10 ng/ml LPS on TNF-alpha levels in monocytes incubated with lipoprotein-deficient serum. The white bars show the baseline levels of TNF-alpha and the red bars show the TNF-alpha levels after the administration of LPS.

As you can see, there were no significant differences between the basal monocyte TNF-alpha levels in monocytes from healthy subjects and cirrhotic patients. Notice that administering LPS significantly raised TNF-alpha levels with respect to the baseline in both monocytes from healthy subjects and from cirrhotic patients. But the most important finding here is that the increase in TNF-alpha levels brought about by LPS administration was three times higher in monocytes from cirrhotic patients than in those from healthy subjects. This suggests that cirrhotic patients’ monocytes are more sensitive than those of healthy subjects.

Emphasizing a Point

It is essential to emphasize the important points in your presentation. This can be accomplished in many ways: by repetition; by pausing; by modulating your voice, stance, and/or facial features; as well as by combining visual and oral information. However, you should never underestimate the power of telling your audience directly that a particular point is important. Just as physically pointing to the parts of a table or diagram help the audience to focus on what is important, comments like “This is a crucial point” or “I can’t overestimate the importance of this point” will help drive home the important points in your presentation. Here are a few expressions that can help you emphasize a point in this way:
I want to stress that...
I want to emphasize this point.
This is a really important point.
... is of paramount importance...
This is the key to understanding...
Whatever you do, do not forget that...
Do not underestimate the role of...
This is essential.
This is important, so I want to make it crystal clear/I want to be sure that you get it.
Let me point out that...

Reiterating

In other words,
What I am trying to say is that
To put it another way,
What this really means is that
In a bit more detail, ...

Introducing Slides and Making Transitions

It is often more impressive to begin to introduce what comes next before you display the slide containing the information.

Now we’re going to look at
Again,
This next slide shows
And here you can see
Let’s look at a concrete example of this.
This next case (image, graph, etc.) is an example of
These data showed that ... is important, [advance to the next slide], but these other data show that ... is also important.
Another factor that plays an important role in this process is

It is important for your audience to know where they are at all times during your presentation. In addition to mapping out your presentation, it is important to remind them often where they are and where they are going to keep them from getting lost. It is equally important to make a smooth transition between points. Transition words can help fulfill both of these functions.

Certain words like this, that, these, those, and the point directly to something we mentioned early. If your previous slide displayed the results of your study,
referring to “these results” when beginning to discuss the next slide makes a clear connection between the two. Another way to make this transition involves echoing parts of the material presented in the previous slide. For example, if one of the major findings presented on the previous slide was a difference in mortality rates between men and women, you might begin your discussion of the next slide with “this difference between sexes”.

Transition words tell the audience whether the new information we are going to present will delve deeper into the material presented before, contrast with it, or leave it behind to move onto something completely different. The following words and expressions are useful for informing the audience about what kind of information will be presented next.

Adding new information along the same lines as that just presented: *what’s more, moreover, further, furthermore, also, additionally, in addition, similarly, first, second, third, last, etc.*

Providing examples: *for example, for instance, in particular, let me give you a concrete example, let’s have a look at an example from one of our patients*

Restating/reinforcing/explaining what has already been said: *again, in brief, in other words, in short, this means*

Introducing the logical conclusion of what we have shown: *therefore, thus, hence, so, consequently, in consequence, as a result, accordingly*

Summarizing: *in summary, to summarize, in conclusion, to conclude, in short*

One way of making the transition from one point to another is to ask a question. The audience will perk up their ears in anticipation of the answer. Here are some useful phrases to make the transition from the introduction, where you end by stating the hypothesis, objective, or research question, to the methods section, where you describe what you did to try to resolve the issue:

- So, how did we go about investigating this?
- To test this hypothesis, we designed a series of experiments….
- To accomplish these objectives, we ….
- To investigate this question, we ….
- To determine whether A or B,
- To see whether this was true, we selected…

To make the transition from the methods section to reporting your results, the following phrases can be useful:

- So, what did we find?
- Let’s have a look at what we found.
- We found some interesting results.
- The data we collected showed that our hypothesis was partially correct.
- Although the study is still underway, our preliminary results show….
- Our results are inconclusive…; nevertheless, it seems that….
- Contrary to what we expected, we found that ….
- Contrary to what you might expect….
- We were surprised to discover that ….
To make the transition from reporting your results to discussing their implications or drawing conclusions, it is often convenient to summarize your results and say something like:

- So, what does this tell us?
- All these results suggest that
- We can conclude that
- Taken together, these results point to three conclusions
- Although it is still too early to reach a definite conclusion, it seems that
- Although our data are limited, they do allow us to conclude that
- This made us wonder

Concluding Your Talk

The end of your talk is arguably the most important part. The audience’s attention grows as they anticipate the end of a presentation, and you should not waste this opportunity to drive your point home. Be sure to state your main points clearly. Do not be afraid of repeating what you have said elsewhere in your talk.

Here are a few phrases that can help you:

- I’d like to take a minute to go over these three take-home points.
- If you forget everything else I have discussed here today, remember these three points.
- That just about wraps things up.
- I hope you have enjoyed my talk.
- Thank you for your attention. I would be happy to try to answer any questions you might have.

Dealing with Questions

Expressing incomprehension:

- Could you be a bit more specific about...?
- Would you repeat the second part of your question?
- I’m afraid I still don’t understand
- I’m sorry. I cannot understand your question. Could you please rephrase it and try to speak a bit more slowly?

Stalling:

- I am not sure I understood your question. Would you repeat it?
- I wonder if you could be a bit more specific about...
- What aspect of the problem are you referring to by saying...?
Answering multiple questions:

- There are two different questions here.
- With regard to your first question…
- Let me address your second question first.

Disagreeing

- With all due respect, I believe that there is no evidence of…
- I disagree with your comments on…
- I think that the importance of…cannot be denied

Evading an issue

- I’m afraid I’m not really in a position to be able to address your question yet.
- We’ll come back to that in a minute, if you don’t mind.
- I don’t think we have enough time to discuss your comments in depth
- I would be happy to talk to you about this later.
- That certainly is an interesting question. Hugh McDonnell will probably be addressing it in his talk later in the session.

We recommend that you practice some of these expressions and incorporate them into your presentation where appropriate. Increasing your “arsenal” of expressions will help to make you more confident and more fluent.